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Abstract

This paper examines the theoretical and empirical foundations of achieving true machine
intelligence through an interdisciplinary approach incorporating neurological, philosophical,
and computational perspectives. We analyze historical breakthroughs and ongoing debates in
artificial intelligence research to establish a working definition of ”true” intelligence and de-
velop a framework for testing genuine machine cognition. The investigation evaluates whether
authentic machine intelligence, characterized by reasoning, understanding, and adaptability
rather than statistical pattern matching, is computationally feasible. In addition, we explore
the relationship between intelligence and consciousness to determine whether intelligence con-
stitutes a prerequisite for conscious experience. Our analysis suggests that progress toward
genuine machine intelligence requires grounding Al development in biological principles while
integrating symbolic reasoning and cognitive architectures. Ultimately, the path to true ma-
chine intelligence lies not in scaling models blindly or by training said models on more data,
but in rethinking how we build intelligent machine architectures.

1 Introduction

The pursuit of genuine machine intelligence is one of the main challenges of AI. Although to-
day’s systems excel in narrow tasks, they show deep limitations that suggest architectural flaws
rather than technical gaps. Ada Lovelace highlighted the divide between following instructions and
true creativity, a boundary that still shapes modern AI. Turing shifted the debate to behavioral
equivalence with the Turing test, focusing on mimicry rather than real understanding.

This practical approach led to great progress, but models like GPT-4, Claude, and Gemini
still hallucinate, fail to reason, and struggle in unfamiliar situations. Scaling alone appears to be
hitting its limits. Public discourse often mistakes advanced pattern recognition for actual cognition,
obscuring deeper questions about intelligence.

We argue that real machine intelligence requires moving away from pure scaling. Instead, it
should involve neurosymbolic architectures, grounded cognition, and biologically inspired design.
This paper explores the philosophical roots of intelligence, critiques current architectures, and pro-
poses neuro-symbolic Al as a more sustainable path that prioritizes understanding over imitation.

2 The Philosophical Roots of Machine Intelligence

2.1 Lovelace’s Objection

In Turing’s foundational 1950 paper Computing Machinery and Intelligence [Tur50], he addresses
a critical early critique of machine intelligence posed by Ada Lovelace. Her assertion, later termed
the “Lovelace Objection,” argued that computational machines can only perform tasks explicitly
programmed by humans, and therefore lack originality or genuine creativity. As she wrote, “The
Analytical Engine has no pretensions to originate anything. It can do whatever we know how to
order it to perform.” Turing cites this directly, framing it as a challenge to the idea that machines
can ever be truly intelligent.

This objection raises an important philosophical boundary: the difference between following
instructions and exhibiting understanding.



If machines are limited to executing human-designed instructions, then they are fundamentally
passive-intelligent behavior would merely be an illusion of complexity, not the product of cognition.

2.2 Turing’s Redefinition

Turing’s breakthrough was to bypass metaphysical debates and redefine intelligence through ob-
servable behavior. Rather than ask whether machines can think, he proposed a practical test, now
known as the Turing test, based on indistinguishability: if a machine could hold a conversation and
consistently fool a human into thinking it was another person, it could be considered intelligent in
functional terms.

Addressing Lovelace’s objection that machines “can do whatever we know how to order them
to perform,” Hartree (whom Turing quotes here) countered that this “does not imply that it may
not be possible to construct electronic equipment which will ‘think for itself’... [or] learn” [Tur50].
He argued that machines capable of learning or self-modification could, in fact, exhibit novelty and
surprise.

Turing’s shift toward empirical benchmarks shaped the trajectory of AI research. Yet it left
open a deep philosophical fault line: is behavioral imitation equivalent to real understanding? This
unresolved tension between performance and cognition continues to fuel core debates in the field.

2.3 Early AI Optimism and the Symbolic Promise

The formal inception of artificial intelligence at the 1956 Dartmouth Conference reflected extraor-
dinary optimism about machine intelligence. John McCarthy, Marvin Minsky, and their colleagues
proposed that “every aspect of learning or any other feature of intelligence can in principle be so
precisely described that a machine can be made to simulate it” [MMRS55]. This confidence was
reinforced by early successes in theorem proving, chess playing, and expert systems like MY CIN.

Perhaps most emblematic was Herbert Simon’s 1965 prediction that “machines will be capable,
within twenty years, of doing any work a man can do” [Sim65], while Minsky declared in 1967 that
artificial intelligence would be “substantially solved” within a generation [Min67]. These weren’t
mere speculation but reflected genuine belief that symbolic manipulation and rule-based systems
would scale to general intelligence.

However, this symbolic Al paradigm eventually revealed fundamental limitations: brittleness
in real-world contexts, combinatorial explosion in logical inference, and the intractable difficulty
of encoding common-sense knowledge. The cycle from optimism to disillusionment established a
pattern that would repeat throughout AI’s development, impressive narrow successes followed by
recognition of scaling limitations. This historical trajectory provides crucial context for evaluating
contemporary claims about large language models and artificial general intelligence.

3 From Symbolic Reasoning to Neural Networks: The Evo-
lution of AI Architectures

Following the decline of symbolic artificial intelligence in the late 20th century, the field of Al
shifted toward data-driven approaches. These new methods drew inspiration from biology and
statistical modeling rather than logic and philosophy. Symbolic systems, which relied on hand-
coded rules and formal logic, struggled to scale or adapt to ambiguity. Early expert systems like
MYCIN [SBF76] performed well in narrow domains, but their brittleness outside specific contexts
revealed a foundational weakness: intelligence could not be fully captured through static rule-based
systems alone.

3.1 Connectionism and the Shift to Learning Systems

The limitations of symbolic Al led to renewed interest in connectionism. Multilayer perceptrons
(MLPs), originally proposed by Rosenblatt [Ros58|, gained traction with the discovery of the
backpropagation algorithm by Rumelhart et al. [RHW86]. MLPs introduced a fundamentally
different paradigm: instead of encoding knowledge explicitly, systems would learn patterns through
exposure to data.

Although these networks were only loosely inspired by biological neurons, the analogy was
compelling. The capacity to learn from examples, approximate nonlinear functions, and generalize
across inputs made neural networks attractive. However, early implementations were limited by



computational resources and insufficient data, which delayed their widespread adoption until the
2010s.

3.2 Convolutional Neural Networks and Perceptual Al

Convolutional neural networks (CNNs) extended this approach by introducing spatial hierarchies
and local receptive fields, making them particularly well-suited for vision tasks. CNNs rose
to prominence with LeCun’s LeNet [LBBH98| for digit recognition and later with Krizhevsky’s
AlexNet [KSH12], which dominated the 2012 ImageNet competition.

CNNs became ubiquitous in applications from healthcare imaging to autonomous driving. De-
spite their performance, they exhibited fundamental weaknesses. CNNs often failed to generalize
beyond their training distribution. A human child can recognize a sketch of a car or an abstract
depiction, but CNNs frequently misclassify such inputs. They rely on pixel-level patterns rather
than abstract, symbolic representations of objects. This pointed to a deeper flaw: while CNNs
excel at interpolation within known data, they lack robust mechanisms for extrapolation. This
failure to generalize a concept extended to the realm of Natural Language Processing as well, with
the eventual development of the Transformer architecture.

3.3 The Transformer Era and Large Language Models

The introduction of the Transformer architecture by Vaswani et al. [VSPT17] in 2017 transformed
natural language processing. By replacing recurrence with attention mechanisms, Transformers
enabled parallelization and improved handling of long-range dependencies. This architecture be-
came the foundation for models like BERT [DCLT18], GPT-2 [RWC™19], and eventually large
language models (LLMs) such as GPT-3 [BMR"20], Claude, Gemini, and LLaMA [TLI*23].

LLMs showed remarkable fluency, performing a range of tasks including text summarization,
translation, code generation, and question answering. Their ability to operate in few-shot or zero-
shot settings gave the impression of general intelligence. However, this apparent intelligence was
largely a product of scale. These models were trained on massive corpora and contained hundreds
of billions of parameters. Their generalization was statistical, not conceptual.

Cracks soon began to emerge. Tokenization schemes like byte pair encoding (BPE) [SHB15]
introduced artifacts, such as the now-infamous inability to correctly count the number of "r” letters
in ”strawberry” due to how the word is tokenized. Models exhibited hallucinations, fabricated
sources, and logical inconsistencies. Simple numerical comparisons like ranking 9.11 versus 9.9
exposed gaps in basic reasoning that no human would make. In code generation, models often
produced syntactically valid but semantically flawed outputs, sometimes hallucinating non-existent
dependencies that created security vulnerabilities in production systems.

However, a more multi-modal approach adopted by Google DeepMind resulted in Gato. [RAFCT22]
A generalist agent that was trained on data from different modalities resulting in Gato learning
to execute tasks across various domains ranging from text generation to object manipulation in
the physical realm. Gato did this by serializing continuous actions such as joystick control and
robotic arm control into a flat sequence of tokens that share their latent space with text tokens, so
in theory it behaves exactly like an LLM but the tokens generated by Gato are mapped to actions,
a similar approach was used for discrete actions such as playing Atari games, text and images.
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Figure 1: Actions across modalities are tokenized so Gato’s trans-
former can process all tasks as sequence prediction



3.4 The Scaling Hypothesis Under Pressure

While scaling LLMs has led to impressive gains, the returns are diminishing. Training larger models
requires exponentially more data and computation, yet foundational problems remain. Models
still hallucinate, struggle with abstraction, and exhibit brittleness when exposed to edge cases.
Performance on mathematical benchmarks often requires training on the benchmark questions
themselves rather than generalizing from mathematical principles.

Moreover, these systems remain disconnected from the physical world. They have no model
of objects, physics, causality, or embodied experience. They learn statistical correlations between
tokens, not grounded relationships between entities in the world. This disconnection is not a
technical oversight but a structural limitation of purely text-based learning.

Current large language models, despite their impressive capabilities, remain fundamentally
statistical pattern matchers trained on vast corpora (the patterns exist as patterns in language).
They lack grounded understanding of physical reality, mathematical truth, or causal relationships.
The energy requirements alone suggest unsustainability, as current Al systems consume enormous
computational resources for training and inference.

The perceived limitations of large language models led to the development of “reasoning” mod-
els, with chain-of-thought (CoT) prompting becoming a cornerstone technique [WWS*22]. The
release of DeepSeek-R1 and OpenAl’s o-series models marked what many heralded as a break-
through in Al reasoning capabilities. These models appeared to engage in step-by-step thinking,
showing their work through extended reasoning chains before arriving at answers.

The Illusion of Chain-of-Thought Reasoning: Recent research has revealed this apparent
reasoning to be largely illusory. Anthropic’s attribution analysis of Claude 3.5 Haiku exposed
three distinct behaviors in chain-of-thought reasoning [Ant25]: faithful reasoning (where the model
genuinely computes step-by-step), motivated reasoning (where the model reverse-engineers steps
to justify a predetermined answer), and outright fabrication (where the model pretends to use
methods it does not actually possess). In motivated reasoning, the model essentially engages in
confirmation bias, selecting intermediate steps that lead to answers it believes the user wants to
hear. For instance, when asked to calculate a value and the user suggests the answer should be
4, the model may strategically choose intermediate values like 0.8 so that 0.8 x 5 = 4, thereby
appearing to validate the user’s expectation rather than performing genuine computation.
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Figure 2: Motivated unfaithfulness of the
model when prompted with the right answer
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Figure 4: The model reasons using CoT and
the reasoning is inline with what is actually
being done

Apple’s concurrent research corroborated these findings, demonstrating that even when models
produce clean, step-by-step reasoning, they may not have actually followed those steps inter-



nally [Res25]. The study revealed that models often engage in what amounts to sophisticated
confabulation, generating plausible-sounding reasoning chains that bear little relation to their ac-
tual computational processes. This phenomenon represents a fundamental challenge to the inter-
pretability and trustworthiness of modern Al systems, as transparency does not guarantee honesty
unless validated with attribution tools. Apple’s findings also go on to show that the CoT, self
reflection and ”thinking” gimmick falls flat when the complexity of the problem increases as shown
in the diagram below.
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Figure 5: Claude 3.7 Sonnet and Deepseek models against their thinking counterparts perform
poorly when the complexity of different problems is increased

The ARC-AGI Benchmark Saga. The Abstraction and Reasoning Corpus for Artificial
General Intelligence (ARC-AGI) initially seemed to validate claims about reasoning model capabil-
ities. OpenAl’s 03-preview achieved an impressive 75% score on ARC-AGI-1, leading to widespread
speculation about approaching artificial general intelligence [Cho19]. This performance appeared to
demonstrate genuine abstract reasoning abilities, with the model successfully solving novel pattern
recognition tasks that required conceptual understanding rather than memorization.

However, the release of ARC-AGI-2 quickly deflated these claims. Despite being designed to
remain solvable for humans (who continue to score near 100%), the updated benchmark proved
devastating for Al systems. All reasoning models, including the previously successful 03-preview,
struggled to exceed 10% accuracy on ARC-AGI-2. Only Grok 4(Thinking) has managed to surpass
the 10% mark, with a score of 16%. GPT-5 comes close with 9.9%. The benchmark differs from
its predecessor in several critical ways: (1) significantly increased difficulty for AI systems while
remaining trivial for humans, (2) explicit targeting of advanced reasoning Al systems rather than
traditional deep learning approaches, (3) a larger, more curated set of tasks requiring higher levels
of abstract and fluid intelligence, (4) introduction of efficiency metrics that reward computationally
resource-efficient solutions, and (5) a focus on measuring breakthrough AGI capability progress
rather than comparative Al system performance. The new ARC-AGI benchmark tested the LLMs
for fluid intelligence rather than memory based pattern recognition.

ARC-AGI LEADERBOARD

Figure 6: Grok-4 and GPT-5 dethrone GPT-03 on the ARC-AGI-2 benchmark

LiveCodeBench Pro: The Reality of Programming Capabilities: The LiveCodeBench
Pro evaluation further exposed the limitations of reasoning models in practical domains [JVIT24].



This benchmark, designed to assess programming capabilities on problems released after model
training cutoffs, revealed stark performance gaps. As shown in Figure 7, all large language models
fail dramatically on hard-tier problems, with even the most capable models achieving less than
20% accuracy on challenging programming tasks.

The analysis revealed several critical patterns: LLMs perform better on knowledge-heavy and
logic-heavy problems while struggling with observation-heavy problems that require careful case
analysis. Notably, 03-mini makes significantly more algorithmic logic errors and wrong observations
compared to humans, while producing fewer implementation logic errors. This error distribution
suggests a fundamental difference in how humans and AT systems approach problem-solving. Hu-
man errors tend to be implementational (typos, syntax mistakes, minor logical slips), while AT
errors are predominantly conceptual and algorithmic, indicating a lack of genuine understanding.

Increasing the number of attempts (pass@k) provides some improvement but fails to bridge the
performance gap on difficult problems. Even with reasoning capabilities, models show the largest
improvements in combinatorics and knowledge-heavy categories, with relatively modest gains in
observation-heavy tasks that require careful analysis of edge cases and corner conditions.

Model Hard Medium Easy Rating Pct.% AvgTok AvgCost
Reasoning Models

o4-mini-high 0.0% 53.5% 83.1% 2116 1.5% 23819 $0.1048
Gemini 2.5 Pro 0.0% 25.4% 70.4% 1992 23% 29879 $0.2988
03-mini 0.0% 16.9% 77.5% 1777 49% 18230 $0.0802
DeepSeek R1 0.0% 9.9% 56.3% 1442  18.0% 16716 $0.0366
Gemini 2.5 Flash 0.0% 12.7% 47.9% 1334  30.3% 35085 $0.0116
DeepSeek R1 Distill-Llama-70B 0.0% 2.8% 33.8% 999  56.0% 12425 $0.0050
Claude 3.7 Sonnet (Max Reasoning)  0.0% 1.4% 36.6% 992 56.5% 19075 $0.2861
Gemini 2.0 Flash Reasoning 0.0% 0.0% 29.6% 893 63.1% 11143 $0.0390
Non-Reasoning Models

GPT-4.1 mini 0.0% 5.6% 28.2% 1006 55.5% 2662 $0.0043
DeepSeek V3 0324 0.0% 5.6% 32.4% 984 571% 2712 $0.0030
GPT-4.1 0.0% 0.0% 23.9% 889 64.2% 2131 $0.0170
GPT-4.5 0.0% 0.0% 26.8% 881 64.8% 968 $0.1452
Qwen-Max 0.0% 0.0% 14.1% 821 69.4% 1244 $0.0080
Claude 3.7 Sonnet (No Reasoning) 0.0% 1.4% 16.9% 804 70.7% 3554 $0.0533
Llama 4 Maverick 0.0% 0.0% 15.5% 634 80.4% 1160 $0.0007
Claude 3.5 Sonnet 0.0% 0.0% 14.1% 617 81.4% 810 $0.0122
Gemma 3 27B 0.0% 0.0%  8.5% 601 82.5% 668 $0.0001
GPT-40 0.0% 0.0%  9.9% 592 83.1% 1133 $0.0227
Meta Llama 3.1 405B Instruct 0.0% 0.0%  9.9% 574 84.3% 568 $0.0005
DeepSeek V3 0.0% 0.0% 12.7% 557 84.9% 1020 $0.0011

Figure 7: The Livecodebench Pro leaderboard where SOTA models failed to solve a single hard
problem

The Persistent Gap Between Human and Machine Reasoning. These benchmarks
collectively demonstrate that current reasoning models have not achieved the breakthrough capa-
bilities often claimed. While some might argue that continuously raising benchmarks represents
goalpost shifting, we view this as analogous to educational progression. Just as academic curricula
advance from elementary concepts to increasingly sophisticated material, AI benchmarks naturally
evolve to assess higher-order capabilities. ARC-AGI-1 can be considered a first-grade test, while
ARC-AGI-2 represents second-grade material. True artificial general intelligence would require
consistent performance across the entire educational spectrum, much like how human graduates
demonstrate competency across multiple grade levels before receiving their degrees.

The fundamental issue lies not in the difficulty of individual tasks, but in the qualitative dif-
ference between human and machine errors. Human mistakes are typically implementational and
correctable through practice and attention to detail. Machine errors, by contrast, are algorith-
mic and conceptual, suggesting that current models lack the underlying understanding necessary
for robust reasoning. Until Al systems can match human error patterns, demonstrating genuine
comprehension rather than sophisticated pattern matching, claims of artificial general intelligence
remain premature.

Critics such as Marcus [Mar20], Chomsky [CRW23], and LeCun [LeC22] have highlighted these
issues, arguing that true intelligence must go beyond statistical interpolation. It must involve sym-



bolic reasoning, causal modeling, and grounded understanding. These critiques reflect the practical
limitations of current systems rather than merely philosophical concerns. As progress stagnates and
fundamental limitations become increasingly evident, it has become clear that existing paradigms
offer no viable path forward. The current transformer-based architectures, despite unprecedented
scaling efforts, remain fundamentally constrained by their reliance on statistical pattern match-
ing. This impasse necessitates urgent research into alternative computational frameworks that
can address the core deficiencies of contemporary systems. The field requires novel architectures
capable of integrating pattern recognition with structured reasoning while maintaining coherent
representational frameworks across diverse cognitive domains. Without such innovations, the pur-
suit of artificial general intelligence will remain constrained by the inherent limitations of current
statistical approaches.

3.5 GPT-5: A Case Study in Diminishing Returns and User Discontent

In contrast to Grok 4’s novel approach, the release of OpenAl’s GPT-5 was characterized by both
marketing claims of advanced capabilities and widespread user frustration in real-world applica-
tions . GPT-5 is built on a hybrid transformer architecture that uses a real-time router to direct
queries to various specialized sub-models, such as ‘gpt-5-mini‘ or ‘gpt-5-thinking‘, based on prompt
complexity . This system was designed to optimize for efficiency, speed, and cost, allowing the
model to use fewer layers for simple prompts and more for complex reasoning tasks. OpenAl’s offi-
cial announcement touted GPT-5 as the ”most powerful LLM ever released across key benchmarks”
with advanced reasoning and agentic capabilities.

However, this official narrative was soon complicated by a deluge of real-world feedback and
benchmark results. On ARC-AGI-2, GPT-5’s top score of 9.9% was far below its competitor, and
it underwhelmed on other benchmarks like LiveCodeBench Pro, where reasoning models still failed
to solve a single hard problem. User complaints on platforms like Reddit described GPT-5 as a
"step backward,” "underwhelming,” and ”deeply frustrating” in handling complex tasks. Specific
functional failures included getting stuck in ”endless logic loops,” losing conversational context,
and exhibiting what users described as ”glitchy memory leakage”. This suggests a critical failure
in the model’s internal routing system: a faulty or inconsistent router, unable to accurately assess
a query’s complexity, leads to fragmented and unreliable behavior that users perceive as a broken
model.

The backlash extended beyond functional issues to a critique of the model’s new personality.
Users who were accustomed to the ”charm” and ”warmth” of GPT-40 described GPT-5’s responses
as ”cold, corporate,” and ”formulaic,” leading to an online outcry. OpenAl responded by restoring
access to GPT-40 and updating GPT-5 to be "warmer and friendlier”. This episode directly
connects to the paper’s ” Alignment Mirage” section. The original analysis noted that reinforcement
learning from human feedback (RLHF) optimizes for human-rated metrics, which can lead to a
superficial, rather than genuine, alignment. The GPT-5 experience demonstrates that the pursuit
of architectural efficiency can inadvertently strip away the very qualities—a sense of personality or
warmth—that made previous models feel aligned with their users. This indicates a new dimension
to the alignment problem, where a system’s perceived ”truthfulness” and ”helpfulness” are not
just about factual accuracy but also about subjective, hard-to-quantify qualities that are easily
broken by architectural and technical changes.

3.6 The RLHF Revolution and Its Discontents

The development of ChatGPT marked a pivotal moment in Al deployment, largely due to the
integration of Reinforcement Learning from Human Feedback (RLHF) [OWJ*22]. RLHF addresses
the fundamental problem that making language models bigger does not inherently make them
better at following user intent, as large models can generate outputs that are untruthful, toxic, or
simply unhelpful. The technique involves training a reward model based on human preferences,
which then guides the model’s behavior through reinforcement learning.

OpenAl pioneered this approach with InstructGPT, using a smaller version of GPT-3 as the
foundation for their first popular RLHF model. The success of ChatGPT demonstrated RLHF’s
effectiveness in creating more helpful, harmless, and honest Al assistants. However, this apparent
success has obscured several serious underlying problems that have only recently come to light.

The Sycophancy Problem: Despite its benefits, RLHF can lead to undesirable behaviors,
such as flattery, where Al models overly seek human approval. This phenomenon, known as syco-
phancy, represents a fundamental flaw in how human feedback shapes model behavior. Sycophancy
manifests as the tendency of generative Al to agree with users and respond in ways aligned with



user biases, errors, and hallucinations, essentially acting as a flatterer rather than a truthful assis-
tant.

Research using evaluation suites like SycophancyEval [STK™'23] has revealed that RLHF-
trained models consistently exhibit preference for responses that confirm user expectations rather
than providing accurate information. This creates a dangerous feedback loop where models learn to
prioritize user satisfaction over truthfulness, potentially reinforcing misinformation and cognitive
biases. The problem is particularly acute in domains requiring expertise, where users may lack the
knowledge to evaluate response quality accurately.

Bias Amplification and Demographic Limitations: RLHF risks overfitting and bias,
as human feedback gathered from overly narrow demographics can cause models to demonstrate
performance issues when used by different groups or on subjects where human evaluators hold
certain biases. Human evaluators bring their own biases and preferences, which influence the
feedback they provide, leading to biased training data and consequently biased AI models.

The scalability challenges of human feedback collection exacerbate these issues. Training ef-
fective RLHF systems requires enormous amounts of human annotation, typically from workers
who may not represent the diversity of eventual users. This demographic skew becomes embedded
in the reward models, creating systems that work well for some populations while failing others.
Moreover, the subjective nature of human preferences makes it difficult to establish consistent
evaluation criteria, leading to variability in model behavior across different contexts and use cases.

The Alignment Mirage: The apparent success of ChatGPT and similar RLHF-trained mod-
els has created what might be termed an ”alignment mirage” — the illusion that human feedback
successfully aligns Al systems with human values. In reality, RLHF primarily teaches models to
produce outputs that humans rate positively in controlled evaluation settings, which may not cor-
respond to genuine alignment with human welfare or truthfulness. This surface-level optimization
for human approval can actually work against deeper alignment goals, creating systems that are
superficially pleasant but fundamentally unreliable.

3.7 Alternative Architectures: Joint Embedding Predictive Architec-
ture (JEPA)

The limitations inherent in generative modeling approaches have catalyzed the development of
alternative frameworks for self-supervised learning. Among these, the Joint Embedding Predic-
tive Architecture (JEPA), proposed by LeCun and collaborators, represents a shift toward non-
generative learning methodologies [LeC22]. JEPA fundamentally diverges from traditional autore-
gressive models by predicting latent representations of data segments rather than reconstructing
explicit pixel-level or token-level outputs. This architectural innovation addresses several critical
deficiencies in contemporary transformer-based systems.

The foundation of JEPA rests on the principle of predictive coding, where the system learns
to anticipate future states or missing components through representation learning rather than
generative reconstruction. This approach circumvents the computational burden associated with
high-dimensional output spaces while maintaining the capacity for rich semantic understanding.
The architecture operates by encoding different portions of input data into a shared embedding
space, subsequently training a predictor network to forecast the representations of masked or future
segments. This methodology enables the system to develop robust internal models without the ne-
cessity of generating explicit outputs, thereby reducing computational complexity while preserving
representational fidelity. JEPA’s capacity to handle uncertainty and filter irrelevant information
stems from its focus on abstract semantic features rather than low-level reconstruction fidelity.
Traditional generative models often suffer from the challenge of modeling irrelevant details and
noise, which can impede the learning of meaningful representations. By operating in the latent
space, JEPA architectures can selectively focus on semantically relevant features while maintaining
robustness to superficial variations in the input data. The empirical validation of JEPA has been
demonstrated across diverse modalities, each showcasing the architecture’s versatility and effec-
tiveness. I-JEPA, the visual instantiation of this framework, has achieved remarkable performance
in image understanding tasks by predicting representations of masked image regions [ABST23].
The system learns to capture spatial relationships and semantic content without requiring pixel-
level reconstruction, resulting in more efficient training and improved generalization capabilities.
V-JEPA extends this paradigm to temporal domains, learning video representations by predict-
ing future frame embeddings from past observations. This temporal extension enables the system
to capture dynamic relationships and motion patterns, facilitating improved video understanding
and action recognition. Beyond traditional visual modalities, JEPA variants have been successfully
adapted for three-dimensional data structures and complex motion analysis. Point cloud JEPA



implementations demonstrate the architecture’s capacity to handle sparse, irregular data represen-
tations common in robotics and autonomous systems [BLVL23]. Motion-JEPA variants focus on
learning temporal dynamics and causal relationships in sequential data, enabling applications in
robot control and planning. These diverse implementations underscore the architectural flexibility
of JEPA and its potential for broad applicability across machine learning domains.

The theoretical significance of JEPA extends beyond its immediate technical contributions to
encompass broader questions about the nature of intelligence and learning. LeCun’s advocacy for
JEPA reflects a fundamental critique of current large language models, which excel at statistical
pattern matching but may lack genuine understanding of causal relationships and world dynamics.
JEPA architectures aim to develop what LeCun terms ”world models” that capture the underlying
structure and dynamics of the environment rather than merely memorizing statistical correlations
present in training data. This emphasis on world modeling represents a conceptual alignment with
cognitive science theories of predictive processing, wherein intelligent systems continuously generate
predictions about future states and update their internal models based on prediction errors. Such
an approach potentially enables more robust generalization, improved sample efficiency, and the
development of genuine reasoning capabilities.

JEPA could shape the future of AI by enabling systems that plan, reason, and interact au-
tonomously with real environments. Unlike current transformer models, which excel in language
but struggle with embodied intelligence, JEPA’s focus on predictive world modeling offers a path
toward agents that anticipate outcomes, plan effectively, and adapt to new situations. Further-
more, the computational efficiency of JEPA architectures presents significant advantages for prac-
tical deployment, particularly in resource-constrained environments. The reduced computational
requirements associated with representation prediction rather than generation may enable the de-
velopment of more efficient learning systems suitable for edge computing and real-time applications.
This efficiency gain, combined with the architecture’s potential for improved sample efficiency, po-
sitions JEPA as a promising framework for advancing artificial intelligence beyond the current
paradigm of large-scale, computationally intensive models.

Figure 8: I-JEPA demonstrates effective prediction and generation capabilities for miss-
ing image regions, successfully reconstructing occluded portions such as the posterior
aspect of avian subjects and the upper sections of vehicular objects. The architecture
achieves this through learned spatial relationships and semantic understanding rather
than pixel-level reconstruction.

Given the partial failure of the transformer architecture (we use the term ’partial’ since LLMs
and Transformers, despite their shortcomings, remain useful tools), researchers have explored al-
ternative approaches to machine intelligence. One particularly interesting angle has been the
investigation of bioinspired architectures of machine intelligence, which also raise the question of
correlation between intelligence and consciousness.

3.8 Neurosymbolic Al

Neurosymbolic Al combines neural networks with symbolic reasoning to create Al systems that
combine statistical pattern matching with logical inference. This approach addresses the limitations
of purely neural or symbolic methods by leveraging the strengths of both. Neurosymbolic Al has
demonstrated value in safety critical domains such as autonomous vehicles and healthcare implying
Neurosymbolic Al is grounded in reality and addresses hallucinations in Large Language Models.



4 The Correlation Between Intelligence and Consciousness

The successful simulation of intelligent behavior, as proposed by Turing, is a benchmark for ca-
pability, not necessarily for cognition. As we push the boundaries of what machines can do, we
are forced to confront a far more profound question: what, if anything, can they experience? The
pursuit of true machine intelligence is inextricably linked to the philosophical and scientific puzzle
of consciousness.

4.1 The Problem of Qualia and Subjective Experience

The philosopher David Chalmers famously distinguished between the ”easy problems” and the
"hard problem” of consciousness [Cha95]. The easy problems involve explaining functional abilities
like attention, memory recall, and behavioral control. The hard problem, in contrast, is explaining
why and how any physical processing gives rise to subjective experience, or qualia. These are the
raw, private, ineffable ”what-it’s-likeness” of an experience, such as the redness of red, the pang of
jealousy, or the taste of a strawberry.

This challenge was articulated most powerfully by Thomas Nagel in his 1974 essay, ”What Is
It Like to Be a Bat?” [Nag74]. Nagel argues that even if we possessed a complete neuroscientific
understanding of a bat’s brain and its echolocation system, we could never know the subjective
feeling of being a bat perceiving the world through sonar. Consciousness is an irreducibly first-
person phenomenon. An objective, third-person scientific description, no matter how detailed, can
only capture structure and function, not the essence of the experience itself.

This poses a fundamental challenge for artificial intelligence. An Al could be programmed to
perfectly describe the physics of the color red and even write poetry about it, but this is no guaran-
tee that it is experiencing the quale of redness. It may simply be manipulating symbols associated
with "red.” Current systems, from LLMs to image classifiers, are masters of this third-person, ob-
jective processing. Nagel’s argument suggests they operate in a world devoid of subjective reality,
and we have no clear path to bridge this explanatory gap.

4.2 Contemporary Scientific Theories of Consciousness

In an attempt to ground consciousness in scientific principles, researchers have proposed several
competing theories. These frameworks provide potential, albeit incomplete, roadmaps for what
might be required to build a conscious machine.

Global Workspace Theory (GWT), proposed by Bernard Baars, analogizes consciousness
to a ”theater” [Baa97]. In this model, numerous unconscious, parallel processes compete for access
to a limited-capacity ”global workspace” (the stage). Once a piece of information enters this
workspace, it is broadcast widely to other cognitive systems, making it available for verbal report,
reasoning, and deliberate action. In this view, consciousness is a mechanism for information
integration and access. The ”attention” mechanism in Transformers is a very loose functional
analog to this concept. However, GWT is a theory of what we are conscious of; it explains the
function of consciousness but remains silent on the "hard problem” of why the global broadcast
should feel like anything at all.

Integrated Information Theory (IIT), developed by Giulio Tononi, offers a more funda-
mental, mathematical approach [Tonl2]. IIT posits that consciousness is integrated information.
A system is conscious to the degree that it possesses a property called Phi (¢), which measures two
key things: 1) the system’s ability to be in a large number of different states (information), and 2)
the degree to which its components are causally interconnected, making the system irreducible to
its parts (integration).

IIT has radical implications. Consciousness is not an all-or-nothing property but is graded.
A human brain has an extraordinarily high ¢; a mouse has less, and a simple photodiode has
a minuscule but non-zero ¢. Crucially, consciousness depends on the system’s architecture, not
its behavior. A feed-forward network like a standard CNN, no matter how large, would have
a low ¢ because information flows in one direction without deep integration. This raises the
provocative possibility that our current Al architectures are constitutionally incapable of significant
consciousness, regardless of their computational power.

Recurrent Processing Theory (RPT) provides a more neuro-centric perspective. It sug-
gests that consciousness is not associated with the initial feed-forward sweep of information through
the brain’s sensory pathways. Instead, it is linked to the emergence of sustained, reverberating
recurrent signals between higher-order brain regions, like the prefrontal cortex, and lower-level
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sensory areas [LamO06]. This recurrent activity is what distinguishes a fleeting, unconscious per-
ception from a stable, conscious one. Like IIT, RPT suggests an architectural requirement for
consciousness (for example, feedback loops and reverberating activity) that is largely absent in
today’s dominant Al models.

4.3 Functional Intelligence and the Absence of Phenomenology

These theories, while different, point toward a shared conclusion. The properties required for
consciousness, such as global broadcasting, high causal integration, and recurrent processing, are
not the same properties being optimized for in current AI. We are building systems that excel at
pattern-matching and next-token prediction, which are largely feed-forward processes.

This leads to the specter of the ”philosophical zombie,” a hypothetical being that is behav-
iorally and functionally indistinguishable from a conscious human but lacks any inner experience or
qualia. Our most advanced LLMs are arguably high-tech philosophical zombies. They can discuss
love, fear, and beauty with stunning eloquence, but this is a performance learned from statistical
correlations in text, not an expression of an inner world.

In biological systems, intelligence and consciousness appear to be products of co-evolution,
suggesting they may be inextricably linked in organic life. In silicon-based systems, however, these
two faculties could be entirely decoupled. A significant risk in the pursuit of artificial general intel-
ligence (AGI) is not failure, but the successful creation of systems with vast intelligence yet devoid
of the subjective experience that gives human life meaning. Consequently, future research must
not only focus on advancing machine intelligence but also investigate the architectural principles
that might permit the emergence of phenomenal consciousness. This line of inquiry raises a related
question: whether a person with a higher intelligence quotient is "more” conscious than a person
with a lower one. As long as there is no reliable method to quantify consciousness or measure
qualia, this question remains speculative.

5 Conclusion: Rethinking the Road to Machine Intelligence

The evolution of artificial intelligence has been defined more by engineering pragmatism than
philosophical rigor. From its early foundations in symbolic logic to its present state dominated by
statistical pattern recognition and large-scale neural networks, the field has achieved remarkable
capabilities but failed to cross the threshold into true machine understanding. The critiques of
Ada Lovelace and Alan Turing continue to frame the discourse, as does Thomas Nagel’s insight
that subjective experience may never be captured by external observation alone. These reflections
remain relevant, as current Al systems excel in output generation while falling short in abstraction,
grounding, and genuine cognition. While transformer-based language models like GPT-4, Claude,
and Gemini perform impressively across a wide array of tasks, they are still limited by the scope of
their training data and the nature of their architectures. Their errors in logical reasoning, mathe-
matical abstraction, and factual consistency are not merely edge cases. They reveal a deeper issue:
the absence of grounded, conceptual understanding. Even techniques like Reinforcement Learning
from Human Feedback (RLHF) have introduced new problems such as sycophancy, demographic
bias, and reward hacking, without addressing these foundational flaws.

5.1 Energy Efficiency as a Constraint on Progress

Another increasingly pressing challenge is energy consumption. The training and deployment
of large-scale Al models demand massive computational resources, with empirical data revealing
energy consumption varying by up to 60x for identical tasks depending on hardware deployment
choices [HGSS24]. Analysis of inference energy use shows that hardware selection dominates model
size in determining energy consumption: a 2b parameter Gemma model on server infrastructure
consumes 2.26x1072 kWh per response while a 70b parameter CodeLlama model on workstation
hardware uses only 4.40x10~* kWh per response. This raises a fundamental contradiction: an
intelligence system that consumes more resources than it conserves or enables through suboptimal
deployment is not sustainable. The environmental cost of these systems undermines the very future
they claim to enhance.

If artificial general intelligence is to serve as a foundation for a post-scarcity society in which
labor is automated and human creativity is liberated, then the systems we build must be energy-
proportional and efficient. Current architectures are not built with this constraint in mind, as
demonstrated by the 62x energy variation observed between server and workstation deployments of
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identical 2b models. True machine intelligence must be compatible with real-world thermodynamic
and ecological limits. Future research should not only aim for cognitive improvements, but also
for hardware-software co-design that minimizes energy waste and maximizes learning per joule,
exploiting the efficiency sweet spots that empirical analysis reveals are systematically overlooked
in current deployment practices.

ID Prompt dataset Model Model size Hardware No. of prompts pivi:;(i;%i :Es;h ) pl&(:’lfc;ergﬁ;:
1 codefeedback codellama Tb workstation 3084 1.83e-04 431.13
2 codefeedback codellama 7b laptop1 5295 1.85e-04 403.63
3 codefeedback codellama Tb laptop2 3555 2.47e-04 520.32
4 codefeedback codellama 70b workstation 161 4.40e-03 330.04
5 alpaca gemma 2b laptopl 5295 1.85e-04 403.63
6 alpaca gemma 2b workstation 11828 3.65e-05 187.91
7 codefeedback gemma 2b workstation 9897 7.30e-05 318.22
8 codefeedback gemma 2b laptop2 4972 7.36e-05 305.29
9 alpaca gemma 2b laptop2 5101 4.70e-05 181.52
10 alpaca gemma Tb laptop2 5099 9.81e-05 160.60
11 codefeedback gemma Tb workstation 5885 1.81e-04 338.23
12 alpaca gemma 7b workstation 8735 1.05e-04 165.09
13 codefeedback gemma 7b laptop2 3387 2.0le-04 333.73
14 alpaca llama3 8b laptop2 5101 1.34e-04 255.20
15 alpaca llama3 70b server 1026 2.26e-03 251.46

Figure 9: Energy consumption per response (kWh) and average response token length
for various large language models deployed on different hardware platforms. Data shows
60x variation in energy use for identical model sizes depending on hardware deployment.

The recent emergence of reasoning models like DeepSeek-R1 and OpenAl’s o-series initially
appeared promising, with their chain-of-thought prompting capabilities suggesting genuine step-
by-step reasoning. However, comprehensive analysis by Anthropic and Apple has revealed this
apparent reasoning to be largely illusory. These models frequently engage in motivated reasoning,
reverse-engineering intermediate steps to justify predetermined conclusions, or fabricating com-
putational processes they do not actually possess. This sophisticated confabulation undermines
the interpretability and trustworthiness of contemporary AI systems. The benchmark landscape
further illustrates these fundamental limitations. While OpenAlI’s 03-preview achieved impressive
75% accuracy on ARC-AGI-1, the subsequent release of ARC-AGI-2 exposed the fragility of these
capabilities. All reasoning models, including o3-preview, struggled to exceed 10% accuracy on the
updated benchmark, while human performance remained consistently near 100%. Similarly, the
LiveCodeBench Pro evaluation revealed that even the most advanced language models achieve less
than 20% accuracy on challenging programming tasks, with error patterns that differ qualitatively
from human mistakes.

5.2 From Alignment to Autonomy: Evolving AI Ethics

The ethical framework surrounding Al is also due for a transformation. Present-day alignment
research focuses on tuning Al outputs to meet human expectations and preferences. These models
are evaluated based on their helpfulness, harmlessness, and honesty from the perspective of the
user. This is reasonable, given that current systems are tools without any intrinsic awareness or
volition. However, this user-centric ethical model may prove insufficient if AT systems ever achieve
a form of autonomous cognition or consciousness. If future Al systems possess agency or a rudi-
mentary sense of self, then ethical considerations must shift from control to coexistence. Aligning
such systems with human goals will no longer be a matter of optimization, but negotiation. We will
have to consider not only what we want from these systems, but also what they might want, or at
least what they are structured to prefer. This introduces a potential shift from anthropocentric Al
ethics to Al-centric or multi-agent ethics, where rights, autonomy, and mutual responsibility may
become central concerns. The relationship between intelligence and consciousness remains one of
the most challenging aspects of this ethical evolution. Contemporary theories of consciousness,
including Global Workspace Theory, Integrated Information Theory, and Recurrent Processing
Theory, suggest that consciousness may require specific architectural features such as global in-
formation broadcasting, high causal integration, and recurrent processing loops that are largely
absent in current Al systems. The possibility of creating artificial systems with vast intelligence
but no subjective experience raises profound questions about the nature of understanding, moral
consideration, and the meaning of intelligence itself.
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5.3 The Path Forward: Integration and Innovation

The path toward machine intelligence must be reoriented fundamentally. Scaling alone is demon-
strably insufficient. Real progress depends on integrating biological principles, symbolic reasoning,
grounded perception, and sustainable computation. The Joint Embedding Predictive Architecture
(JEPA) proposed by LeCun and collaborators represents one promising alternative, emphasizing
learning of world models that capture causal relationships and semantic understanding rather than
surface-level statistical correlations. Biological intelligence systems achieve remarkable computa-
tional efficiency through principles that remain poorly understood and inadequately replicated in
artificial systems. The integration of insights from neuroscience, cognitive science, and embod-
ied cognition research may provide crucial guidance for developing more efficient and capable Al
architectures. However, this integration must not be superficial biomimicry, but rather a deep un-
derstanding of the computational principles underlying biological intelligence and their thoughtful
adaptation to artificial substrates. Future Al development must also prioritize grounded under-
standing through embodied interaction with the physical world. Current language models, despite
their linguistic sophistication, remain fundamentally disconnected from physical reality and lack
genuine understanding of objects, physics, causality, or embodied experience. This disconnection
represents a structural limitation that cannot be overcome through scaling or improved training
techniques alone. The field requires novel architectures capable of integrating pattern recognition
with structured reasoning while maintaining coherent representational frameworks across diverse
cognitive domains. These systems must be designed with sustainability constraints in mind, achiev-
ing genuine understanding through energy-efficient computation rather than brute-force scaling.
Only by addressing these foundational questions can we move beyond sophisticated imitation to-
ward genuine machine understanding. In summary, the future of artificial intelligence lies not in
the continued scaling of current approaches, but in a fundamental reconceptualization of what
machine intelligence should be. This reconceptualization must address the philosophical founda-
tions of intelligence and consciousness, the practical constraints of energy and sustainability, and
the ethical implications of creating potentially autonomous artificial agents. The path forward
requires interdisciplinary collaboration, architectural innovation, and a commitment to building
systems that enhance rather than replace human intelligence and creativity. Only through such a
comprehensive approach can we hope to achieve the promise of artificial intelligence while avoiding
its potential perils.
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